POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Thin layers [S2IMat1-Nanomat>CW]

dr hab. Izabela Szafraniak-Wiza izabela.szafraniak-wiza@put.po	•		
Coordinators		Lecturers	
Number of credit points 2,00			
Tutorials 0	Projects/seminar 0	S	
Number of hours Lecture 15	Laboratory classe 15		Other (e.g. online) 0
Form of study full-time		Requirements elective	
Level of study second-cycle		Course offered in polish	
Area of study (specialization) Nanomaterials		Profile of study general academic	
Course Field of study Materials Engineering		Year/Semester 1/2	

Prerequisites

Knowledge: Basic knowledge of solid state physics, crystallography, materials science and nanotechnology Skills: Logical thinking, use of the information obtained from library and Internet Social competencies: Understanding the need for learning and acquiring new knowledge

Course objective

The knowledge of specific methods of thin film depositions, specific properties of thin films and their investigation methods. The knowledge of thin films applications in electronics

Course-related learning outcomes

Knowledge:

the student has knowledge about specific properties of thin films.k_w04 k_w06 k_w08 the student has knowledge about specific investigation methods of thin film.k_w01, k_w04 the student has knowledge about thin film applications in modern electronics.k_w06, k_w04 k_w07

Skills:

the student can propose applications of different thin films in modern electronics. k_u01 k_u13

the student can propose and investigate the specific properties of thin films. k_u01 k_u08 nk_u10 k_u013

the student can relate the specific properties of thin films and their deposition methods. k_u08 , $k_u010 k_u016$

Social competences:

the student can collaborate in order to obtain and implement the new knowledge. k_k03 the student is aware of importance of nanotechnology in modern industry and society. k_k02

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lectures:

Written test at the end of the semester

Laboratory:

The final report prepared according to lecturer's guidelines, student activity at laboratory and final test.

Programme content

Lectures:

- 1. Thin film deposition methods
- 2. Thin films in modern electronics
- 3. True single crystalline thin films
- 4. Conventional and unconventional lithography
- 5. Specific methods of thin films investigations Laboratory:
- 1. XRD investigations of thin films.
- 2. AFM investigation of film topography part I
- 3. AFM investigation of film topography part II
- 4. Structural analysis of epitaxial films
- 5. Epitaxial stress analysis of thin films

Teaching methods

- 1. Lecture: multimedia presentation.
- 2. Laboratory exercises: performing exercises, discussion, team work.

Bibliography

Basic

1. Oleś, Metody doświadczalne fizyki ciała stałego, WNT 1998

- 2. Nanoelectronics and Information Technology, Waser R., Wiley-VCH, Berlin, 2003
- 3. Nanomateriały inżynierskie, K. Kurzydłowski, M. Lewandowska (red.), PWN 2010

4. Nanotechnologie, R.W. Kelsall, I.W. Hamley, M. Goeghegan (red.), PWN, 2008 Additional

Handbook of thin film devices, M. H. Francombe (red.), Acad. Press, San Diego, 2000 Kittel C.,Wstęp do fizyki ciała stałego, PWN, Warszawa, 1999 Scientific papers

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,00
Classes requiring direct contact with the teacher	30	1,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	15	0,00